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Abstract

Matching elements of two data schemas or two data in-
stances plays a key role in data warehousing, e-business,
or even biochemical applications. In this paper we present
a matching algorithm based on a fixpoint computation that
is usable across different scenarios. The algorithm takes
two graphs (schemas, catalogs, or other data structures) as
input, and produces as output a mapping between corre-
sponding nodes of the graphs. Depending on the matching
goal, a subset of the mapping is chosen using filters. After
our algorithm runs, we expect a human to check and if nec-
essary adjust the results. As a matter of fact, we evaluate
the ‘accuracy’ of the algorithm by counting the number of
needed adjustments. We conducted a user study, in which
our accuracy metric was used to estimate the labor sav-
ings that the users could obtain by utilizing our algorithm
to obtain an initial matching. Finally, we illustrate how our
matching algorithm is deployed as one of several high-level
operators in an implemented testbed for managing informa-
tion models and mappings.

1. Introduction

Finding correspondences between elements of data
schemas or data instances is required in many application
scenarios. This task is often referred to asmatching. Con-
sider a comparison shopping website that aggregates prod-
uct offers from multiple independent online stores. The
comparison site developers need to match the product cat-
alogs of each store against their combined catalog. For in-
stance, the ‘product code’ field in one catalog may match
the ‘product ID’ and ‘store ID’ fields in the combined cata-
log. Or, think of a merger between two corporations, both
of which need to consolidate their relational databases de-
ployed by different departments. In this integration sce-
nario, and in many data warehousing applications, match-
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ing of relational schemas is required. Schema matching is
utilized for a variety of other types of schemas including
UML class taxonomies, ER diagrams, and ontologies.

Matching of data instances is another important task. For
example, consider two CAD files or program scripts that
have been independently modified by several developers. In
this scenario, matching helps identify moved or modified el-
ements in these complex data structures. In bioinformatics,
matching has been used for network analysis of molecular
interactions [9]. In this domain, data instances represent
metabolic networks of chemical compounds, or molecular
assembly maps. Matching of molecular networks and bio-
chemical pathways helps to predict metabolism of an organ-
ism given its genome sequence.

Matching problems often differ a lot. So do the ap-
proaches to matching. For example, for matching rela-
tional schemas one could use SQL data types to determine
which columns are closely related. On the other hand, in
XML schema matching, hierarchical relationships between
schema elements can be exploited. Because of this diver-
sity, applications that rely on matching are often built from
scratch and require significant amount of thought and pro-
gramming. We address this problem by proposing a match-
ing algorithm that allows quick development of matchers
for a broad spectrum of different scenarios. We are not try-
ing to outperform custom matchers that use highly tuned,
domain-specific heuristics.

In this paper we suggest a simple structural algorithm
that can be used for matching of diverse data structures.
Such data structures, which we callmodels, may be data
schemas, data instances, or a combination of both. The ele-
ments of models represent artifacts like relational tables and
columns, or products and customers. The algorithm that we
suggest is based on the following idea. First, we convert the
models to be matched into directed labeled graphs. These
graphs are used in an iterative fixpoint computation whose
results tell us what nodes in one graph are similar to nodes
in the second graph. For computing the similarities, we rely
on the intuition that elements of two distinct models are



similar when their adjacent elements are similar. In other
words, a part of the similarity of two elements propagates
to their respective neighbors. The spreading of similarities
in the matched models is reminiscent to the way how IP
packets flood the network in broadcast communication. For
this reason, we call our algorithm thesimilarity floodingal-
gorithm. We refer to the result produced by the algorithm
as amapping. Depending on the particular matching goal,
we then choose a subset of the resulting mapping using ad-
equate filters. After our algorithm runs, we expect a human
to check and if necessary adjust the results. As a matter of
fact, in Section 5 we evaluate the ‘accuracy’ of the algo-
rithm by counting the number of needed adjustments.

While this paper focuses on matching, the broader goal
of our work is to design a generic tool that helps to manip-
ulate and maintain schemas, instances, and match results.
With this tool, matching is not done entirely automatically.
Instead, the tool assists human developers in matching by
suggesting plausible match candidates for the elements of
a schema. Using a graphical interface, the user adjusts the
proposed match result by removing or adding lines connect-
ing the elements of two schemas. Often, the correct match
depends on the information only available or understand-
able by humans. For example, even matches as plausible as
ZipCode to zip code can be doomed as incorrect by a
data warehouse designer who knows that zip codes from a
given relational source should not be collected due to poor
data quality. In such cases, the mappings suggested by the
tool may be incorrect or incomplete.

In this paper we are making the following contributions:

� We introduce a generic matching algorithm that is us-
able across application areas (Section 3).

� We discuss approaches for selecting relevant subsets of
match results (Section 4).

� We suggest an ‘accuracy’ metric for evaluating auto-
matic matching algorithms (Section 5) and evaluate the
effectiveness of our algorithm on the basis of a user
study that we conducted (Section 6).

We review the related work in Section 7.

2. Overview of the Approach

Before we go into details of our matching algorithm, let
us briefly walk through an example that illustrates matching
of two relational database schemas. Please keep in mind
that the technique we describe is not limited to relational
schemas. Consider schemasS1 andS2 depicted in Figure 1.
The elements ofS1 andS2 are tables and columns. Assume
for now that our goal is to obtain exactly one matching el-
ement for every element inS1. A part of the matching re-
sult could be, for example, the correspondence of column

S1

CREATE TABLE Personnel (

Pno int,

Pname string,

Dept string,

Born date,

UNIQUE pkey(Pno)

)

S2

CREATE TABLE Employee (

EmpNo int PRIMARY KEY,

EmpName varchar(50),

DeptNo int REFERENCES

Department,

Salary dec(15,2),

Birthdate date

)

CREATE TABLE Department (

DeptNo int PRIMARY KEY,

DeptName varchar(70)

)

Figure 1. Matching two relational schemas:
Personnel and Employee-Department

Personnel/Pname to columnEmployee/EmpName .
A sequence of steps that allows us to determine the corre-
spondences between tables and columns inS1 andS2 can
be expressed as the following script:

1. G1 = SQL2Graph(S1); G2 = SQL2Graph(S2);
2. initialMap = StringMatch(G1, G2);
3. product = SFJoin(G1, G2, initialMap);
4. result = SelectThreshold(product);

As a first step, we translate the schemas from their native
format into graphsG1 andG2. In our example, the native
format of the schemas are ASCII files containing table defi-
nitions in SQL DDL. A portion of the graphG1 is depicted
in Figure 2. The translation into graphs is done using an im-
port filter SQL2Graph that understands the definitions of
relational schemas. We do not insist on choosing a particu-
lar graph representation for relational schemas. The repre-
sentation used in Figure 2 is based on the Open Information
Model (OIM) specification [1]. The nodes in the graph are
shown as ovals and rectangles. The labels inside the ovals
denote the identifiers of the nodes, whereas rectangles rep-
resent literals, or string values. For example, node&1 rep-
resents the tablePersonnel in graphG1, whereas nodes
&2, &4, and&6 denote columnsPno, Pname, andDept ,
respectively. ColumnBorn and unique keyperskey are
omitted from the figure for clarity. TablesEmployee and
Department from schemaS2 are represented in a similar
manner in graphG2. In our example,G1 has a total of 31
nodes whileG2 has 55 nodes.

As a second step, we obtain an initial mappingini-
tialMap betweenG1 andG2 using operatorStringMatch.
The mappinginitialMap is obtained using a simple string
matcher that compares common prefixes and suffixes of
literals. A portion of the initial mapping is shown in Ta-
ble 1. Literal nodes are highlighted using apostrophes. The
second column of the table lists similarity values between
nodes inG1 andG2 computed on the basis of their tex-
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Table

Column ColumnType

Personnel

Pno

Pname
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int

string

type

type

type

type

type

type
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name

name

name

name

name
&1
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&6
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&5

SQLtype

SQLtype

SQLtype

column

column

column

. . .

Figure 2. A portion of graph representation
G1 for relational schema S1

Line# Similarity Node inG1 Node inG2

1. 1.0 Column Column
2. 0.66 ColumnType Column
3. 0.66 ‘Dept’ ‘DeptNo’
4. 0.66 ‘Dept’ ‘DeptName’
5. 0.5 UniqueKey PrimaryKey
6. 0.26 ‘Pname’ ‘DeptName’
7. 0.26 ‘Pname’ ‘EmpName’
8. 0.22 ‘date’ ‘Birthdate’
9. 0.11 ‘Dept’ ‘Department’

10. 0.06 ‘int’ ‘Department’

Table 1. A portion of initialMap (10 of total 26
entries are shown)

tual content. The similarity values range between 0 and 1
and indicate how well the corresponding nodes inG1 match
their counterparts inG2. Notice that the initial mapping is
still quite imprecise. For instance, it suggests mapping col-
umn names onto table names (e.g. columnDept in S1 onto
tableDepartment in S2, line 9), or names of data types
onto column names (e.g. SQL typedate in S1 onto column
Birthdate in S2, line 8).

As a third step, operatorSFJoin is applied to pro-
duce a refined mapping calledproduct betweenG1 and
G2. In this paper we propose an iterative ‘similarity flood-
ing’ (SF) algorithm based on a fixpoint computation that
is used for implementing operatorSFJoin. The SF algo-
rithm has no knowledge of node and edge semantics. As
a starting point for the fixpoint computation the algorithm
uses an initial mapping likeinitialMap. Our algorithm is
based on the assumption that whenever any two elements
in modelsG1 andG2 are found to be similar, the simi-
larity of their adjacent elements increases. Thus, over a
number of iterations, the initial similarity of any two nodes
propagates through the graphs. For example, in the first
iteration the initial textual similarity of strings ‘Pname’
and ‘EmpName’ adds to the similarity of columnsPer-
sonnel/Pname andEmployee/EmpName . In the next
iteration, the similarity ofPersonnel/Pname to Em-

Similarity Node inG1 Node inG2

1.0 Column Column
0.81 [Table: Personnel] [Table: Employee]
0.66 ColumnType ColumnType
0.44 [ColumnType: int] [ColumnType: int]
0.43 Table Table
0.35 [ColumnType: date] [ColumnType: date]
0.29 [UniqueKey: perskey] [PrimaryKey: on EmpNo]
0.28 [Col: Personnel/Dept] [Col: Department/DeptName]
0.25 [Col: Personnel/Pno] [Col: Employee/EmpNo]
0.19 UniqueKey PrimaryKey
0.18 [Col: Personnel/Pname] [Col: Employee/EmpName]
0.17 [Col: Personnel/Born] [Col: Employee/Birthdate]

Table 2. The mapping after applying Select-
Threshold on result of SFJoin

ployee/EmpName propagates to the SQL typesstring
and varchar(50) . This subsequently causes increase
in similarity between literals ‘string ’ and ‘varchar ’,
leading to a higher resemblance ofPersonnel/Dept
to Department/DeptName than that of Person-
nel/Dept to Department/DeptNo . The algorithm
terminates after a fixpoint has been reached, i.e. the sim-
ilarities of all model elements stabilize. In our example,
the refined mappingproduct returned bySFJoin contains
211 node pairs with positive similarities (out of a total of
31 � 55 = 1705 entries in theG1; G2 cross-product).

As a last operation in the script, operatorSelectThresh-
old selects a subset of node pairs inproduct that corre-
sponds to the ‘most plausible’ matching entries. We dis-
cuss this operator in Section 4. The complete mapping
returned bySelectThreshold contains 12 entries and is
listed in Table 2. For readability, we substituted numeric
node identifiers by the descriptions of the objects they rep-
resent. For example, we replaced node identifier&2 by
[Col:Personnel/Pno] .

As we see in Table 2, the SF algorithm was able to pro-
duce a good mapping betweenS1 andS2 without any built-
in knowledge about SQL DDL by merely using graph struc-
tures. For example, tablePersonnel was matched to ta-
bleEmployee despite the lack of textual similarity. Notice
that the table still contains correspondences like the one be-
tween nodeColumn in G1 to nodeColumn in G2, which
are hardly of use given our goal of matching the specific ta-
bles and columns. We discuss the filtering of match results
in more detail in Section 4. The similarity values shown
in the table may appear relatively low. As we will explain,
in presence of multiple match candidates for a given model
element, relative similarities are often more important than
absolute values.
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Figure 3. Example illustrating the Similarity Flooding Algorithm

3. Similarity Flooding Algorithm

The internal data model that we use for models and map-
pings is based on directed labeled graphs. Every edge in a
graph is represented as a triple(s; p; o), wheres ando are
the source and target nodes of the edge, and the middle el-
ementp is the label of the edge. For a more formal defini-
tion of our internal data model please refer to [14]. In this
section, we explain our algorithm using a simple example
presented in Figure 3. The top left part of the figure shows
two modelsA andB that we want to match.

Similarity propagation graph A similarity propagation
graph is an auxiliary data structure derived from modelsA

andB that is used in the fixpoint computation of our algo-
rithm. To illustrate how the propagation graph is computed
fromA andB, we first define apairwise connectivity graph
(PCG) as follows:((x; y); p; (x0; y0)) 2 PCG(A;B) ()
(x; p; x0) 2 A and(y; p; y0) 2 B.

Each node in the connectivity graph is an element from
A � B. We call such nodesmap pairs. The connectivity
graph for our example is enclosed in a dashed frame in Fig-
ure 3. The intuition behind arcs that connect map pairs is
the following. Consider for example map pairs(a; b) and
(a1; b1). If a is similar tob, then probablya1 is somewhat
similar tob1. The evidence for this conclusion is provided
by thel1-edges that connecta to a1 in graphA andb to b1
in graphB. This evidence is captured in the connectivity
graph as anl1-edge leading from(a; b) to (a1; b1). We call
(a1; b1) and(a; b) neighbors.

The induced propagation graph forA andB is shown
next to the connectivity graph in Figure 3. For every edge
in the connectivity graph, the propagation graph contains an
additional edge going in the opposite direction. The weights
placed on the edges of the propagation graph indicate how
well the similarity of a given map pair propagates to its
neighbors and back. These so-calledpropagation coeffi-
cientsrange from 0 to 1 inclusively and can be computed
in many different ways. The approach illustrated in Fig-
ure 3 is based on the intuition that each edge type makes an
equal contribution of 1.0 to spreading of similarities from a

given map pair. For example, there is exactly onel2-edge
out of (a1; b) in the connectivity graph. In such case we set
the coefficientw((a1; b); (a2; b2)) in the propagation graph
to 1.0. The value 1.0 indicates that the similarity ofa1 to b
contributes fully to that ofa2 andb2. Analogously, the prop-
agation coefficientw((a2; b2); (a1; b)) on the reverse edge
is also set to 1.0, since there is exactly one incomingl2-
edge for(a2; b2). In contrast, twol1-edges are leaving map
pair (a; b) in the connectivity graph. Thus, the weight of
1.0 is distributed equally amongw((a; b); (a1; b1)) = 0:5
andw((a; b); (a2; b1)) = 0:5. In [14] we analyze several
alternative ways of computing the propagation coefficients.

Fixpoint computation Let �(x; y) � 0 be the similar-
ity measure of nodesx 2 A andy 2 B defined as a total
function overA � B. We refer to� as a mapping. The
similarity flooding algorithm is based on an iterative com-
putation of�-values. Let�i denote the mapping between
A andB afterith iteration. Mapping�0 represents the ini-
tial similarity between nodes ofA andB, which is obtained
e.g., using string comparisons of node labels. In our exam-
ple we assume that no initial mapping betweenA andB is
available, i.e.�0(x; y) = 1:0 for all (x; y) 2 A�B.

In every iteration, the�-values for a map pair(x; y)
are incremented by the�-values of its neighbor pairs in
the propagation graph multiplied by the propagation co-
efficients on the edges going from the neighbor pairs to
(x; y). For example, after the first iteration�1(a1; b1) =
�0(a1; b1) + �0(a; b) � 0:5 = 1:5. Analogously,�1(a; b) =
�0(a; b)+�0(a1; b1) �1:0+�0(a2; b1) �1:0 = 3:0. Then, all
values are normalized, i.e., divided by the maximal�-value
(of current iteration)�1(a; b) = 3:0. Thus, after normaliza-
tion we get�1(a; b) = 1:0, �1(a1; b1) = 1:5

3:0 = 0:5, etc.
In general, mapping�i+1 is computed from mapping�i as
follows (normalization is omitted for clarity):

�i+1(x; y) = �i(x; y)+P
(au;p;x)2A; (bu;p;y)2B

�i(au; bu) � w((au; bu); (x; y)) +P
(x;p;av)2A; (y;p;bv)2B

�i(av ; bv) � w((av ; bv); (x; y))
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Identifier Fixpoint formula
Basic �i+1 = normalize(�i + '(�i))

A �i+1 = normalize(�0 + '(�i))
B �i+1 = normalize('(�0 + �i))
C �i+1 = normalize(�0 + �i + '(�0 + �i))

Table 3. Variations of the fixpoint formula

The above computation is performed iteratively until the
Euclidean length of the residual vector�(�n; �n�1) be-
comes less than" for somen > 0. If the computation does
not converge, we terminate it after some maximal number
of iterations. In Section 6 we study the convergence proper-
ties of the algorithm. The right part of Figure 3 displays the
similarity values for the map pairs in the propagation graph.
These values have been obtained after five iterations using
the above equation. In the figure, the top three matches with
the highest ranks are highlighted in bold. These map pairs
indicate how the nodes inA should be mapped onto nodes
in B.

Taking normalization into account, we can rewrite the
above equation to obtain the ‘basic’ fixpoint formula shown
in Table 3. The function' increments the similarities of
each map pair based on similarities of their neighbors in
the propagation graph. The variationsA, B, andC of the
fixpoint formula are studied in Section 6. Our experiments
suggest that formulaC performs best with respect to quality
of match results and convergence speed.

4. Filters

In this section we examine several filters that can be
used for choosing the best match candidates from the list
of ranked map pairs returned by the similarity flooding al-
gorithm. Usually, for every element in the matched mod-
els, the algorithm delivers a large set of match candidates.
Hence, the immediate result of the fixpoint computation
(like the one shown on the right of Figure 3) may still be
too voluminous for many matching tasks. For instance, in a
schema matching application the choice presented to a hu-
man user for every schema element may be overwhelming,
even when the presented match candidates are ordered by
rank. We refer to the immediate result of the iterative com-
putation asmultimapping, since it contains many potentially
useful mappings as subsets.

It is not evident, which criteria could be useful for select-
ing a desirable subset from a multimapping. An additional
complication is that as many as2n different subsets can be
formed from a set ofn map pairs. To illustrate the selection
problem, consider the match result obtained for two tiny
modelsA andB that is shown on the left in Figure 4 (the
models themselves are are omitted in the figure for clarity).
The multimappingM contains four map pairs with similar-

Σ =1.27σ < Σ =1.35σ

a1

a2

(a1 b )1

(a2 b )2

(a1 b )2

(a2 b )1

b1

b2

1.0

0.540.81

0.27

[1,1]-[1,1]

cardinality
constraint

Possible selections:

M1=

M1 M2

M2=

but M is stable marriage!1

Multimapping M

Figure 4. Cumulative similarity vs. ‘stable
marriage’

a1

a2

b1

b2

1.0

1.0 1.0

1.0

0.540.81

0.50 0.33

Figure 5. Relative similarities for the example
in Figure 4

ities �(a1; b1) = 1:0, �(a2; b1) = 0:54, etc. From the set
of 4 pairs,24 = 16 distinct subsets can be selected. Every
one of these 16 subsets may be a plausible alternative for
the final match result presented to the user.

We address the selection problem using a three-step ap-
proach. First, we use the available application-specific con-
straints to reduce the size of the multimapping. As exem-
plified below, typing and cardinality constraints may help to
eliminate many map pairs from the multimapping. As a sec-
ond step, we use selection techniques developed in context
of matching in bipartite graphs to pick out the subset that is
finally delivered to the user. At last, we evaluate the useful-
ness of particular selection techniques for a given class of
matching tasks (e.g. schema matching) and choose the tech-
nique with empirically best results. In the rest of this section
we discuss the first two steps in more detail. We present an
evaluation of several selection techniques in Section 6.

Constraints Frequently, matching tasks include
application-specific constraints that can be used for
pruning of a large portion of possible selections. Recall our
relational schemasS1 (Personnel ) andS2 (Employee )
from Section 2. At least two useful constraints are con-
ceivable for this matching scenario. First, we could use a
typingconstraint to restrict the result to only those matches
that hold between columns or tables, i.e., we can ignore
matches of keys, data types etc. Second, if our goal were
to populate thePersonnel table with data from the
Employee table, we could deploy acardinalityconstraint
that requires exactly one match candidate for every element
of schemaS1. In this case, the cardinality of the resulting
mapping would have to satisfy the restriction[0; n]� [1; 1]
(using the UML notation). The right expression[1; 1] limits
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the number ofS2-elements that may match each element of
S1 to exactly one (between a lower limit of 1 and an upper
limit of 1). Conversely, the left expression[0; n] specifies
the valid number ofS1-match candidates (between 0 and
n) for each element ofS2, i.e. elements ofS2 may remain
unmatched or may have one or more match candidates.

Unfortunately, in many matching tasks typing or cardi-
nality constraints do not narrow down the match result suf-
ficiently. For example, even after applying a one-to-one
([1; 1]� [1; 1]) cardinality constraint in Figure 4, we are still
left with two sets of map pairsM1 andM2. Below we ex-
amine several strategies for making the decision between
the remaining alternativesMi.

Selection metrics To make an educated choice between
Mi’s we need an intuition of what constitutes a ‘better’
mapping. Fortunately, our selection dilemma is closely re-
lated to well-known matching problems in bipartite graphs,
so that we can build on intuitions and algorithms developed
for solving this class of problems (see e.g. [12, 8]). In the
graph matching literature, amatchingis defined as a map-
ping with cardinality[0; 1]�[0; 1], i.e., a set of edges no two
of which are incident on the same node. Abipartitegraph is
one whose nodes form two disjoint parts such that no edge
connects any two nodes in the same part. Thus, a mapping
can be viewed as an undirected weighted bipartite graph.

A helpful intuition that we will predominantly use for ex-
plaining alternative selection strategies for multimappings
is provided by the so-calledstable marriageproblem. To
remind, in an instance of the stable marriage problem, each
of n women andn men lists the members of the opposite
sex in order of preference. The goal is to find the best match
between men and women. A stable marriage is defined as
a complete matching of men and women with the property
that there are no two couples(x; y) and(x0; y0) such thatx
prefersy0 to y andy0 prefersx to x0. For obvious reasons,
such a situation would be regarded as unstable. Imagine
that in Figure 4 elementsa1 anda2 correspond to women.
Then, menb1 and b2 would be the primary and the sec-
ondary choice for womana1. Obviously, mappingM1 sat-
isfies the stable marriage condition, whereasM2 does not.
In M2, womana1 and manb1 favor each other over their
actual partners, which puts their marriages in jeopardy.

The stable-marriage property provides a plausible crite-
rion for selecting a desired mapping from a multimapping.
Further selection criteria can be borrowed from other well-
known matching problems like the assignment problem,
finding a maximal matching, etc. For example, the as-
signment problem consists in finding a matchingMi in a
weighted bipartite graphM that maximizes the total weight
(cumulative similarity)

P
(x;y)2Mi

�(x; y). Viewed as a
marriage, such matching maximizes the total satisfaction of
all men and women. In Figure 4,

P
M2

� = 0:81 + 0:54 =

1:35, whereas
P

M1
� = 1:0 + 0:27 = 1:27. Thus,M2

maximizes the total satisfaction of all men and women even
thoughM2 is not a stable marriage.

To summarize, the filtering problem can be characterized
by providing a set of constraints and a selection function
that picks out the ‘best’ subset of the multimapping under
a given selection metric. Conceptually, the selection func-
tion assigns a value to every subset of the multimapping.
The subset for which the function takes the largest/smallest
value is selected as the final result. For example, using the
assignment problem as selection metric, we can construct a
filter that applies a cardinality constraint[0; 1] � [0; 1] and
utilizes a selection function

P
(x;y)2Mi

�(x; y) to choose
the best subset. In concrete implementations of selection
functions, we can often find algorithms that avoid enumer-
ating all subsets of the multimapping and determine the de-
sired subset directly.

In the remainder of this section we describe a filter that
produced empirically best results in a variety of schema
matching tasks, as we show later in Section 6. This ap-
proach is implemented in our testbed as theSelectThresh-
old operator. The intuition behind this approach is based
on aperfectionist egalitarian polygamy, which means that
no male or female is willing to accept any partner(s) but the
best. For a more detailed discussion of alternative selection
approaches please refer to [14].

TheSelectThreshold operator usesrelativesimilarities,
as opposed to the absolute similarities of map pairs com-
puted by the flooding algorithm. Absolute similarity is sym-
metric, i.e.x is similar toy exactly asy to x. Under the
marriage interpretation, this means that any two prospec-
tive partners like each other to the same extent. Consider-
ing relativesimilarities suggests a more diversified interpre-
tation. Relative similarities are asymmetric and are com-
puted as fractions of the absolute similarities of the best
match candidates for any given element. In the example
in Figure 4,b1 is the best match candidate fora2, so we
set
!

� rel (a2; b1) := 1:0. The relative similarity for all
other match candidates ofa2 is computed as a fraction of
�(a2; b1). Thus,

!

� rel (a2; b2) := �(a2;b2)
�(a2;b1)

= 0:27
0:54 = 0:5.

All relative similarities for this example are summarized in
Figure 5.

The SelectThreshold operator selects a subset of a
multimapping, in which all map pairs carry a relative sim-
ilarity value of at leasttrel. For example, fortrel = 0:5
in Figure 5, womana2 would accept manb2 as a partner,
but manb2 would reject womana2 since

 

� rel (a2; b2) =
0:33 < 0:5. Most of the time,SelectThreshold with
trel = 1:0 yields matchings, or monogamous societies. In
a less picky version of the operator withtrel < 1:0, more
persons have a chance to find a partner, and polygamy is
more likely. We demonstrate the impact of threshold value
trel in Section 5.SelectThreshold operator selects a sub-

6



set of the multimapping which is guaranteed to satisfy the
stable-marriage property in a polygamous society. As we
illustrate in Section 6, the stable marriage property proved
instrumental for filtering multimappings in schema match-
ing scenarios.

5. Assessment of Matching Quality

In this section, we suggest a metric for measuring the
quality of automatic matching algorithms. A crucial issue
in evaluating matching algorithms is that a precise defini-
tion of the desired match result is often impossible. In many
applications the goals of matching depend heavily on the
intension of the users, much like the users of an informa-
tion retrieval system have varying intensions when doing a
search. Typically, a user of an information retrieval sys-
tem is looking for a good, but not necessarily perfect search
result, which is generally not known. In contrast, a user per-
forming say schema matching is often able to determine the
perfect match result for a given match problem. Moreover,
the user is willing to adjust the result manually until the in-
tended match has been established. Thus, we feel that the
quality metrics for matching tasks that require tight human
quality assessment need to have a slightly different focus
than those developed in information retrieval.

The quality metric that we suggest below is based upon
user effort needed to transform a match result obtained au-
tomatically into the intended result. We assume a strict no-
tion of matching quality i.e. being close is not good enough.
For example, imagine that a matching algorithm comes up
with five equally plausible match candidates for a given el-
ement, then decides to return only two of them, and misses
the intended candidate(s). In such case, we give the al-
gorithm zero points despite the fact that the two returned
candidates might be very similar to what we are looking
for. Moreover, our metric does not address semiautomatic
matching, in which the user iteratively adjusts the result and
invokes repeatedly the matching procedure. Thus, the accu-
racy results we obtain here can be considered ‘pessimistic’,
i.e., our matching algorithm may be ‘more useful’ that what
our metric predicts.

Matching accuracy Our goal is to estimate how much
effort it costs the user to modify the proposed match re-
sult P = f(x1; y1); : : : ; (xn; yn)g into the intended result
I = f(a1; b1); : : : ; (am; bm)g. The user effort can be mea-
sured in terms of additions and deletions of map pairs per-
formed on the proposed match resultP . One simplified
metric that can be used for this purpose is what we call
match accuracy. Let c = kP \ Ik be the number of correct
suggestions. The difference(n� c) denotes the number of
false positives to be removed fromP , and(m � c) is the
number of false negatives, i.e. missing matches that need to

be added. For simplicity, let us assume that deletions and
additions of match pairs require the same amount of effort,
and that the verification of a correct match pair is free. If the
user performs the whole matching procedure manually (and
does not make mistakes),m add operations are required.
Thus, the portion of the manual clean-up needed after ap-
plying the automatic matcher amounts to(n�c)+(m�c)

m
of

the fully manual matching.
We approximate the labor savings obtained by using an

automatic matcher as accuracy of match result, defined as
1� (n�c)+(m�c)

m
. In a perfect match,n = m = c, resulting

in accuracy 1. Notice thatc
m

and c
n

correspond to recall and
precision of matching [11]. Hence, we can express match
accuracy as a function of recall and precision as follows:

Accuracy = 1� (n�c)+(m�c)
m

= c
m
(2� n

c
)

= Recall

�
2�

1

Precision

�

In the above definition, the notion of accuracy only
makes sense if precision is not less than 0.5, i.e at least half
of the returned matches are correct. Otherwise, the accu-
racy is negative. Indeed, if more than a half of the matches
are wrong, it would take the user more effort to remove the
false positives and add the missing matches than to do the
matching manually from scratch. As expected, the best ac-
curacy 1.0 is achieved when both precision and recall are
equal to 1.0.

Intended match result Accuracy, as well as recall and
precision, are relative measures that depend on theintended
match result. For a meaningful assessment of match qual-
ity, the intended match result must be specified precisely.
Recall our example dealing with relational schemas that
we examined in Section 2. Three plausible match results
for this example (that we call Sparse, Expected, and Ver-
bose) are presented in Table 4. A plus sign (+) indi-
cates that the map pair shown on the right is contained
in the corresponding desired match result. For example,
map pair ([Table: Personnel] , [Table: Em-
ployee] ) belongs to both Expected and Verbose intended
results. The Expected result is the one that we consider the
most natural one. The Verbose result illustrates a scenario
where matches are included due to additional information
available to the human designer. For example, the data in
tablePersonnel is obtained from bothEmployee and
Department , although this is not apparent just by look-
ing at the schemas. Similarly, the Sparse result is a match-
ing where some correspondences have been eliminated due
to application-dependent semantics. Keep in mind that in
the Sparse and Verbose scenarios, the human selecting the
‘perfect’ matchings has more information available than our
matcher. Thus, clearly we cannot expect our matching al-
gorithm to do as well as in the Expected case.
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Sparse Expected Verbose Node inG1 Node inG2

+ + [Table: Personnel] [Table: Employee]
+ [Table: Personnel] [Table: Department]

+ + [UniqueKey: perskey] [PrimaryKey: on EmpNo]
+ + + [Col: Personnel/Dept] [Col: Department/DeptName]

+ [Col: Personnel/Dept] [Col: Department/DeptNo]
+ [Col: Personnel/Dept] [Col: Employee/DeptNo]

+ + + [Col: Personnel/Pno] [Col: Employee/EmpNo]
+ + + [Col: Personnel/Pname] [Col: Employee/EmpName]
+ + + [Col: Personnel/Born] [Col: Employee/Birthdate]

Table 4. Three plausible intended match results for matching problem in Figure 1
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Figure 6. Matching accuracy as a function of trel-threshold for intended match results Sparse, Ex-
pected, and Verbose from Table 4

Accuracy, precision, and recall obtained for all three in-
tended results using versionC of the flooding algorithm
(see Table 3) are summarized in Figure 6. For each diagram,
we executed a script like the one presented in Section 2. The
SelectThreshold operator was parameterized usingtrel-
threshold values ranging from 0.6 to 1.0. As an additional
last step in the script, we applied operatorSQLMapFil-
ter that eliminates all matches except those between tables,
columns, and keys.1 As shown in the figure, match accu-
racy 1.0 is achieved for0:95 � trel � 1:0 in the Expected
match, i.e., no manual adjustment of the result is required
from the user. In contrast, if the intended result is Sparse,
the user can save only 50% of work at best. Notice that the
accuracy quickly becomes negative (precision goes below
0.5) with decreasing threshold values. Using no threshold
filter at all, i.e. trel = 0, yields recall of 100% but only
4% precision, and results in a desastrous accuracy value of
–2144% (not shown in the figure). Increasing threshold val-
ues corresponds to the attempt of the user to quickly prune
undesired results by adjusting a threshold slider in a graph-
ical tool.

Figure 6 indicates that the quality of matching al-
gorithms may vary significantly in presence of different
matching goals. As mentioned earlier, our definition of ac-
curacy is pessimistic, i.e., the user may save more work as

1SQLMapFilter does not filter out (unlikely) matches between say ta-
bles and columns.

indicated by the accuracy values. The reason for that is
twofold. On the one hand, if accuracy goes far below zero,
the user will probably scrap the proposed result altogether
and start from scratch. In this case, no additional work (in
contrast to that implied by negative accuracy) is required.
On the other hand, removing false positives is typically less
labor-intensive than finding the missing match candidates.
For example, consider the data pointtrel = 0:75 in the Ex-
pected diagram. The matcher found all 6 intended map pairs
(100% recall), and additionally returned 6 false positives
(50% precision) resulting in an accuracy of 0.0. Arguably,
removing these false positives requires less work as com-
pared to starting with a blank screen.

6. Evaluation of algorithm and filters

To evaluate the performace of the algorithm for schema
matching tasks, we conducted a user study with help of
eight volunteers in the Stanford Database Group. The study
also helped us to examine how different filters and pa-
rameters of the algorithm affect the match results. For
our study we used nine relatively simple match problems.2

Some of the problems were borrowed from reseach papers
[15, 6, 18]. Others were derived from data used on the web-

2The complete specification of the match tasks
handed out to the users is available athttp://www-
db.stanford.edu/ �melnik/mm/sfa/
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Figure 7. Average matching accuracy for 7 users and 9 matching problems

sites like Amazon.com or Yahoo.com. Every user was re-
quired to solve tasks of three different kinds (shown along
thex-axis of Figure 7):

1. matching of XML schemas (Tasks 1,2,3)

2. matching of XML schemas using XML data instances
(Tasks 4,5,6)

3. matching of relational schemas (Tasks 7,8,9)

The information provided about the source and target
schemas was intentionally vague. The users were asked
to imagine a plausible scenario and to map elements in
both schemas according to the scenario they had in mind.
No cardinality constraints were given (any[0; n] � [0; n]
mapping was accepted). Noteworthy is that almost no two
users could agree on the intended match result for a given
matching task, even when examples of data instances were
provided (tasks 4,5,6). Therefore, we could hardly expect
any automatic procedure to produce excellent results. From
eight users, one outlier (i.e. the user with highly deviating
results) was eliminated. The accuracy in percent achieved
by our algorithm (using fixpoint formulaC) for each of the
seven users and every task is summarized in Figure 7. The
accuracy metric was used to estimate the amount of work
that a given user could save by using our algorithm. The
accuracy data was obtained after applyingSelectThresh-
old operator withtrel = 1. Negative accuracy of –14% in
Task 3 indicates that User 1 would have spent 14% more
work adjusting the automatic match result than doing the
match manually.

Note that in Task 1 the algorithm performed very well,
while in Task 2 the results were poor. It turned out that the
models used in Task 2 had very simple structure, so that the
algorithm was mainly driven by the initial textual match.
We did not use any dictionaries for string matching in any
of the experiments reported in this paper. Hence, the syn-
onyms used in Task 2 were considered as plausible matches
by humans but were not recognized by the algorithm. The
matching accuracy over 7 users and 9 problems averaged
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Figure 8. Matching accuracy for different fil-
ters and three versions of the algorithm

to 52%. Hence, our study suggests that for many matching
tasks, as much as a half of manual work can be saved using
very little application-specific code. This figure is typically
even higher in simpler tasks, e.g. when matching two XML
documents conforming to the same DTD. Using synonyms
may further improve the results of matching. The sizes of
the propagation graphs obtained from schemas used in the
study ranged from 128 to 1222 edges.

Using matching accuracy as the quality measure, we uti-
lized the data collected in the user study to drive our evalu-
ation and tuning of the algorithm for schema matching. As
a result of this evaluation, we determined the parameters of
the algorithm and the filter that performed best on average
for all users and matching problems in our study. The vari-
ations of the fixpoint formula that we used are depicted in
Table 3. Using distinct fixpoint formulas results in different
multimappings produced by the algorithm as well as differ-
ent convergence speed. We then applied different filters to
choose the best subsets of multimappings. Figure 8 sum-
marizes the accuracy (averaged over all tasks) obtained for
every version of the algorithm and filter that we used. The
filters were defined as follows:

� Thresholdfilter corresponds to theSelectThreshold
operator described in Section 4. It produces mappings
of cardinality [0; n] � [0; n] using relative-similarity
thresholdtrel = 1:0.
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� Exact is a [0; 1] � [0; 1] version ofThreshold, which
yields monogamous societies.

� Best returns a[0; 1] � [0; 1] mapping using a selec-
tion metric that corresponds to the assignment prob-
lem. The implementation of the filter uses a greedy
heuristic. For the next unmatched element, a best
available candidate is chosen that maximizes the cu-
mulative similarity.

� Left yields a [0; 1] � [1; 1] mapping, in which ev-
ery node on the left is assigned a match candidate
that maximizes the cumulative similarity.Right is a
[1; 1]� [0; 1] counterpart ofLeft.

� Outerfilter delivers a[1; n]� [1; n] mapping, in which
every node on the left and on the right is guaranteed to
have at least one match candidate.

As suggested by Figure 8, the best overall accuracy of
57.9% was achieved usingThresholdfilter with the fixpoint
formulaB. The accuracy ofThresholdand Exact filters
lie very close to each other. This is not surprising, since
Thresholdwith trel = 1:0 typically produces[0; 1]� [0; 1]
mappings. In our study,Right consistently outperforms
Left, since in most matching tasks the right schemas were
smaller; nodes in right schemas were therefore more likely
to appear in the intended match results supplied by the
users. Outer performed worst, since in many tasks only
small portions of schemas were intended to have matching
counterparts.

We tried to estimate the usefulness of other filters, which
are either hard to implement or require extensive compu-
tation, by using sampling. For example, a filter that re-
turns a maximal matching (a[0; 1] � [0; 1] mapping with
the most map pairs) is apparently not an optimal one for
schema matching. Under formulaB, the total number of
map pairs in all tasks after applying theBestfilter is 101,
with associated accuracy of40%. This accuracy value is
lower than 54% obtained using theExactfilter that yields
only 73 map pairs. Overall, our study suggests that preserv-
ing the stable-marriage property is desirable for selecting
subsets of multimappings.

Notice that the fixpoint formulaeA,B, andC yield com-
parable matching accuracy for each filter. However, for-
mula C has much better convergence properties, as sug-
gested by Table 5. The table shows the numbern of it-
erations that were required in every task to obtain a resid-
ual vectork�(�n; �n�1)k < 0:05. For every fixpoint for-
mula, we executed the algorithm in two versions, ‘as is’ and
‘strongly connected’. Strongly connected versions guar-
antee convergence. This effect is achieved by making�0

contain positive similarity values (e.g. at least 0.001) for
each map pair in the cross-product of nodes of left and right
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Figure 9. Impact of randomizing initial simi-
larities on matching accuracy

schemas. We found experimentally that the strongly con-
nected versions of the algorithm yielded approximately the
same overall accuracy for the filters that preserve the stable-
marriage property (Threshold, Exact, andBest). In contrast,
enforcing convergence had a substantial negative impact on
accuracy for the filtersLeft, Right, andOuter. For a detailed
dicussion of convergence criteria please refer to [14].

We investigated seven distinct approaches to comput-
ing the propagation coefficients in the induced propagation
graph. In the approach illustrated in Section 3, we use a
so-calledinverse-productformula: we count the number of
arcs with a certain label that leave a given pair of nodes in
both graphs, multiply the two numbers, and take the inverse
of this product as a propagation coefficient. In our user
study, we found that the best overall match results were pro-
duced using the inverse-average formula. In this formula,
we take the inverse of theaveragenumber (instead of prod-
uct) of equilabeled arcs. A formal definition of the formulas
that we examined and the details of this experiment are pre-
sented in [14].

As a last experiment in this section, we study the impact
of the initial similarity values (�0) on the performance of
the algorithm. For this purpose, we randomly distorted the
initial values computed by the string matcher. The initial
similarities were computed using two versions of a string
matcher, one of which took term frequencies into account.
Figure 9 depicts the influence of randomization on match-
ing accuracy across all users and matching tasks. For ex-
ample, randomization of 50% means that every initial simi-
larity value was randomly increased or decreased byx per-
cent,x 2 [�50%; 50%]. Negative similarity was adjusted to
zero. It is noteworthy that a randomization factor of 100%
introduced accuracy penalty of just about 15%. This result
indicates that the similarity flooding algorithm is relatively
robust against variations in seed similarities. The dotted
lines show another radical modification of initial similari-
ties, in which each non-zero value in�0 was set to the same
number computed as the average of all positive similarity
values. In this case, the accuracy dropped to 30%, which
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Formula T1 T2 T3 T4 T5 T6 T7 T8 T9 Total

A (as is) 18 48 122 78 1 12 37 25 25 1

A (strongly connected) 15 56 89 81 1488 18 48 25 31 1851
B (as is) 8 428 17 39 8 13 10 24 21 568
B (strongly connected) 7 268 21 32 13 15 14 21 53 444
C (as is) 7 9 9 11 7 7 9 10 9 78
C (strongly connected) 7 9 8 11 7 5 9 7 9 72

Table 5. Illustration of convergence properties of variations of fixpoint formula for tasks T1; : : : ; T9 in
the user study. Shows iterations needed until length of residual vector < 0:05.

still saves the users on average one third of the manual work.
To summarize, the main results of our study were the

following:

� For an average user, overall labor savings across all
tasks were above 50%. Recall from Section 5 that our
accuracy metric gives a pessimistic estimate, i.e. actual
savings may be even higher.

� A quickly converging version of the fixpoint formula
(C) did not introduce accuracy penalties.

� Thresholdfilter performed best.

� The best formula for computing the propagation coef-
ficients was based on the inverse average [14].

� The flooding algorithm is relatively insensitive to ‘er-
rors’ in initial similarity values.

7. Related Work

Our work was inspired by model management scenarios
presented in the vision paper [2] by Bernstein et al. In par-
ticular, our scripts use similar high-level operations on mod-
els. Such an approach can significantly simplify the devel-
opment of metadata-based tasks and applications compared
to the use of current metadata repositories and their low-
level APIs.

A recent classification and review of matching tech-
niques can be found in [18]. Most of the previously pro-
posed approaches lack genericity and are tailored to a spe-
cific application domain such as schema or data integra-
tion, and specific schema types such as relational or XML
schemas. Moreover, most approaches are restricted to find-
ing 1:1 matching correspondences. A few promising ap-
proaches not only use schema-level but also instance-level
information for schema matching [11, 6]. Unfortunately,
their use of neural networks [11] or machine learning tech-
niques [6] introduces additional preparing and training ef-
fort.

Concurrently and independently to the work reported in
this paper, a generic schema matching approach called Cu-
pid was developed at Microsoft Research [13]. It uses a

comprehensive name matching based on synonym tables
and other thesauri as well as a new structural matching ap-
proach considering data types and topological adjacency of
schema elements.

Many other studies have used more sophisticated linguis-
tic (name/text) matchers compared to our very simple string
matcher, e.g. WHIRL [5]. The work in [15] addresses the
related problem of determining mapping expressions be-
tween matching elements.

In general, match algorithms developed by different re-
searchers are hard to compare since most of them are not
generic but tailored to a specific application domain and
schema types. Moreover, as we have discussed in Section 5,
matching is a subjective operation and there is not always
a unique result. Previously proposed metrics for measur-
ing the matching accuracy [11, 6] did not consider the extra
work caused by wrong match proposals. Our accuracy met-
ric is similar in spirit to measuring the length of edit scripts
as suggested in [4]. However, we are counting the edit oper-
ations on mappings, rather than those performed on models
to be matched.

In designing our algorithm and the filters, we borrowed
ideas from three research areas. The fixpoint computation
corresponds to random walks over graphs [16], as explained
in [14]. A well-known example of using fixpoint compu-
tation for ranking nodes in graphs is the PageRank algo-
rithm used in the Google search engine [3]. Unlike Page-
Rank, our algorithm has two source graphs and extensively
uses and depends on edge labeling. The filters that we pro-
posed for choosing subsets of multimappings are based on
the intuition behind the class of stable marriage problems
[8]. General matching theory and algorithms are compre-
hensively covered in [12]. Finally, the quality metric that
we use for evaluating the algorithm is related to the preci-
sion/recall metrics developed in the context of information
retrieval.

The data model used in this paper is based on the RDF
model [10]. For transforming native data into graphs we
use graph-based models defined for different applications
(see e.g. [1, 17, 7]).
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8. Conclusion

In this paper we presented a simple structural algorithm
based on fixpoint computation that is usable for matching
of diverse data structures. We illustrated the applicability of
the algorithm to a variety of scenarios. We defined several
filtering strategies for pruning the immediate result of the
fixpoint computation. We suggested a novel quality metric
for evaluating the performance of matching algorithms, and
conducted a user study to determine which configuration of
the algorithm and filters performs best in chosen schema
matching scenarios.

The similarity flooding algorithm and the filters dis-
cussed in the paper are used as operators in the testbed that
we implemented. In our testbed, high-level algebraic oper-
ations are deployed for manipulating models and mappings
using scripts like the one shown in Section 1. The testbed
supports schema definitions and instance data available in
SQL DDL, XML, OEM, UML, and RDF.

Additional aspects of our work are covered in the ex-
tended technical report [14]. These aspects include conver-
gence and complexity of the flooding algorithm, a summary
of open issues and limitations, architecture and implemen-
tation of the testbed, and several detailed examples that il-
lustrate computing schema correspondences using instance
data, or finding related elements in a data instance.
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